Explicit inversion formulae for the spherical mean Radon transform
نویسندگان
چکیده
منابع مشابه
Explicit inversion formulae for the spherical mean Radon transform
Abstract We derive explicit formulae for the reconstruction of a function from its integrals over a family of spheres, or for the inversion of the spherical mean Radon transform. Such formulae are important for problems of thermoand photo-acoustic tomography. A closed-form inversion formula of a filtrationbackprojection type is found for the case when the centres of the integration spheres lie ...
متن کاملA series solution and a fast algorithm for the inversion of the spherical mean Radon transform
An explicit series solution is proposed for the inversion of the spherical mean Radon transform. Such an inversion is required in problems of thermoand photo-acoustic tomography. Closed-form inversion formulae are currently known only for the case when the centres of the integration spheres lie on a sphere surrounding the support of the unknown function, or on certain unbounded surfaces. Our ap...
متن کاملInversion algorithms for the spherical Radon and cosine transform
We consider two integral transforms which are frequently used in integral geometry and related fields, namely the cosine and the spherical Radon transform. Fast algorithms are developed which invert the respective transforms in a numerically stable way. So far, only theoretical inversion formulas or algorithms for atomic measures have been derived, which are not so important for applications. W...
متن کاملRange descriptions for the spherical mean Radon transform ∗
The transform considered in the paper averages a function supported in a ball in Rn over all spheres centered at the boundary of the ball. This Radon type transform arises in several contemporary applications, e.g. in thermoacoustic tomography and sonar and radar imaging. Range descriptions for such transforms are important in all these areas, for instance when dealing with incomplete data, err...
متن کاملan 2 00 7 A series solution and a fast algorithm for the inversion of the spherical mean Radon transform
An explicit series solution is proposed for the inversion of the spherical mean Radon transform. Such an inversion is required in problems of thermo-and photo-acoustic tomography. Closed-form inversion formulae are currently known only for the case when the centers of the integration spheres lie on a sphere surrounding the support of the unknown function, or on certain unbounded surfaces. Our a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2007
ISSN: 0266-5611,1361-6420
DOI: 10.1088/0266-5611/23/1/021